The effect of nanocomposite synthesis and the drying procedure of graphene oxide dispersion on the polycaprolactone/graphene oxide nanocomposite properties

Author:

Minář Jaroslav1ORCID,Doležal Jan2,Brožek Jiří2

Affiliation:

1. Department of Electrotechnology, Czech Technical University in Prague, Prague, Czech Republic

2. Department of Polymers, University of Chemistry and Technology Prague, Prague, Czech Republic

Abstract

In this work, we compare how the properties of polycaprolactone (PCLO) nanocomposites are affected by the method of nanocomposite synthesis and the differences in graphene oxide (GO) properties. PCLO nanocomposites with freeze-dried or hot-dried graphene oxide (FGO/HGO) were synthesized by in situ polymerization and melt mixing. The PCLO molar masses remained constant during melt mixing, but they were significantly reduced with increasing amount of GOs during in situ polymerization. Despite this fact, the in situ polymerized nanocomposites showed enhancement in Young modulus up to 45%, compared to only 10% modulus increase of melt-mixed nanocomposites. This was attributed to the higher crystallinity and the higher level of nanofiller dispersion and exfoliation in in situ polymerized nanocomposites. When comparing the effect of FGO and HGO on nanocomposites properties, the improved dispersion and ameliorated mechanical properties were observed for the former one.

Funder

Ministry of Education Youth and Sports, Czech Republic

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanocomposites: Homogenization and Kinematic Relations;Mechanics of Nanomaterials and Polymer Nanocomposites;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3