Porosity Effect on Residual Flexural Strength following Low Energy Impact of Carbon Fibre Composites

Author:

Arthurs B.1,Bull D.J.1,Arumugam V.2,Chambers A.R.1,Santulli C.3

Affiliation:

1. Faculty of Engineering and Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK

2. Department of Aerospace, MIT Campus, Anna University, Chennai, India

3. School of Architecture and Design, Università di Camerino, 63100 Ascoli Piceno, Italy

Abstract

Studies of the combined effects of the presence of porosity (as it may result from partially effective cure cycles) and of low-energy impact damage on the residual properties of CFRP laminates have led so far to controversial results. In particular, it is not clear from the literature whether the presence of voids would blunt crack propagation following impact or rather would promote damage development. These effects would respectively either increase or reduce post-impact residual strength, relative to that of the laminate with virtually no voids, as the result of an optimal manufacturing procedure. With this in mind, different cure cycles have been applied to produce carbon fibre-reinforced polymer (CFRP) composites with various levels of void content, which were subjected to low energy impact damage (3, 4.5 and 6 J) and then to post-impact flexural strength measurement. Damage assessment using micro-focus computed tomography (μCT) was used to complement traditional ultrasonic C-scans, which proved ineffective on the high-porosity samples. Three cure-cycles were investigated: one which led to high porosity (average void content 4 vol%) and two conventional low-porosity cure cycles, only one of which included a post-cure cycle. This study has found that, despite a lower initial flexural strength, higher residual flexural strength was retained after impact in the high-porosity material than in the low-porosity one. This is explained by the lower extent of impact damage observed in the high porosity material, where voids had the effect of suppressing delamination propagation.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3