Affiliation:
1. Polymer Materials Engineering, Bursa Technical University, Bursa, Turkey
2. Advanced Technologies- Materials Science and Engineering, Bursa Technical University, Bursa, Turkey
Abstract
Petroleum-based polymers have a wide range of uses in the packaging industry, including films, food packaging, rigid containers, foamed containers, medical products, etc. This study focuses on improving the properties of polyvinyl alcohol (PVA) based material systems, one of the most popular water-soluble biopolymers, to reduce the waste of petroleum-based plastics, which are widely used. Polyvinyl alcohol (PVA) nanocomposite films containing low concentrations (0.05–1%) of graphene oxide (GO) and reduced graphene oxide (rGO) were produced via the solution casting method. When electrical properties of nanocomposite films were evaluated, the addition of 1 wt% GO and rGO resulted in a 36% and 45% decrease in the volumetric resistance of the films as well as a decrease in surface resistance of 24.5% and 34.9%, respectively. The maximum tensile strength of 1% GO and rGO-reinforced PVA nanocomposites was found to be ∼59 MPa and ∼68 MPa with an increase of 20% and 38% compared to neat PVA films, respectively. The average Young’s modulus of 1% GO and rGO-reinforced PVA nanocomposites also increased from 2561 MPa to 3515 MPa and 4219 MPa with an increase of 37% and 65%, respectively. As a result, the electrical conductivity, Young’s modulus, maximum tensile strength, thermal properties, and optical absorption of nanocomposite films increased by adding GO and rGO to PVA. The results show that the produced nanocomposite film may be a promising material for packaging applications.
Subject
Materials Chemistry,Polymers and Plastics,Ceramics and Composites
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献