Comparative study of carbon-based nanofillers for improving the properties of HDPE for potential applications in food tray packaging

Author:

Gill Yasir Qayyum12ORCID,Jin Jie2,Song Mo2

Affiliation:

1. Department of Polymer and Process Engineering, University of Engineering and Technology, Lahore, Pakistan.

2. Department of Materials, Loughborough University, Loughborough, UK

Abstract

High-density polyethylene (HDPE)/carbon filler composites for potential applications in food tray packaging were prepared by melt compounding HDPE with one-dimensional (1D)-multiwalled carbon nanotubes (MWCNT), two-dimensional (2D)-graphene oxide (GO) and three-dimensional (3D)-carbon black (CB) on a twin-screw extruder. The morphology of fillers inside the HDPE matrix was characterized and correlated to the mechanical, thermal and barrier properties of the nanocomposites. The results showed the distinct effect of CB on the mechanical, thermal and barrier properties of HDPE from MWCNT and GO. The morphological analysis revealed uniform dispersion for all the fillers, but the agglomerate formation was a lot more evident in MWCNT-based nanocomposites. Ball milling solved the large agglomerate formation for MWCNT and produced nanocomposites with improved mechanical properties. In comparison to 1D and 2D nanofillers, the 3D-CB filler showed remarkable contribution to tensile toughness but caused a reduction in barrier properties of HDPE, the increase in tensile toughness was attributed to uniform dispersion of the filler, enhanced mechanical interlocking between filler and polymer, appearance of high degree of crazing on tested samples and increase in nanocomposite internal temperature during tensile testing.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3