In situ suspension polymerization of vinyl chloride/3-(trimethoxysilyl) propyl methacrylate (MPTMS) intercalated Mg-Al-layered double hydroxide: II. Morphological, thermal properties and diffusion behavior

Author:

Mohammadi Berenjegani Reza1ORCID,Darvishi Reza2ORCID,Payam Ghasem3ORCID

Affiliation:

1. Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran

2. Polymer Engineering Department, Faculty of Petroleum and Gas (Gachsaran), Yasouj University, Gachsaran, Iran

3. Faculty of Polymer Engineering, Institute of Polymeric Materials, Sahand University of Technology, New Town of Sahand, Tabriz, Iran

Abstract

A series of PVC composites were produced using an in-situ suspension polymerization method with an optimal amount of 5 wt% of MgAl(NO3) layered double hydroxide (LDH) or LDH-MPTMS, which is MPTMS-intercalated Mg-Al LDH. The physical, mechanical, and thermal properties of the composite samples were compared to pure PVC. Results from the Brabender® plastograph showed that the PVC grains produced with LDH-MPTMS had a longer thermal stability time and shorter fusion time. The addition of LDH-MPTMS nanosheets increased the gelation degree of PVC particles, resulting in a lower temperature/time requirement for processing. The thermal stability of the composite material was confirmed through a standard dehydrochlorination test, which demonstrated a 40% improvement in dehydrochlorination rate compared to pure PVC. This improvement was 12% higher than that observed in the PVC/LDH composite. TGA curves indicated a significant increase in the 5 and 50% weight loss temperatures of PVC resins with the addition of 5wt% LDH or LDH-MPTMS, with an approximate growth of 11°C. The glassy state storage modulus and Tg of the PVC/LDH-MPTMS composite were higher than those of pure PVC and the PVC/LDH composite. Mechanical analysis revealed that the PVC/LDH-MPTMS composites exhibited greater stiffness and toughness, as well as significantly higher Charpy notched impact strength, tensile strength, and Young’s modulus compared to both the PVC/LDH composite and pure PVC.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3