Effect of size and shape of nanofillers on electrostatic and thermal behavior of epoxy-based composites

Author:

Velani Mihir N12,Patel Ritesh R3

Affiliation:

1. Gujarat Technological University, Ahmedabad, Gujarat, India

2. Department of Electrical Engineering, RK University, Rajkot, Gujarat, India

3. Department of Electrical Engineering, G.H. Patel College of Engineering & Technology, Anand, Gujarat, India

Abstract

The role of nanodielectrics in the electrical power system is becoming crucial owing to its superior properties and potential applications in the field. Yet, the materials face limited breakdown strength and thermal properties. Further, the nanodielectrics have not found a comprehensive commercial platform because of the costly manufacturing process, and characterization and testing facilities. Therefore, to reduce the involved cost, in this work, an FE (finite element) based computational technique has been implemented to visualize the effect of shape, size, and filler concentration under the application of high voltage (HV). The epoxy-based nanodielectrics have been modeled incorporating a range of different shapes and size nanofillers—Al2O3, BN, BeO, SiO2, and TiO2. The paper discusses the 2D-analysis of the modeled nanodielectric in the steady-state electrostatic fields and thermal domains. It shows the insights of the nanofillers’ choice to ensure a perfect blend of electrical and thermal properties. The epoxy with square-shaped BeO fillers showed a rise in the electric field of nearly 1.5 times than unfilled neat epoxy, which indicates a significant surge in thermal conductivity at specific filler loading.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3