Vinyl Ester Resin Modified with Acrylated Epoxidised Soybean (AESO) and Linseed (AELO) Oils: Effect of Additional Urethane Crosslinking

Author:

Grishchuk S.1,Karger-Kocsis J.23

Affiliation:

1. Institut für Verbundwerkstoffe GmbH (Institute for Composite Materials), Kaiserslautern University of Technology, D-67663 Kaiserslautern, Germany

2. Department of Polymer Engineering, Budapest University of Technology and Economics, Muegyetem rkp. 3, H-1111 Budapest, Hungary

3. MTA–BME Research Group for Composite Science and Technology, Muegyetem rkp. 3., H1111 Budapest, Hungary

Abstract

Bisphenol A-based vinyl ester resin (VE) was modified with acrylated epoxidised soybean and linseed oils (AESO and AELO, respectively) in 10 wt.%. The double bond/epoxy ratio in these functionalised vegetable oils was practically the same, i.e. 30/70%, allowing us to deduce effects caused by the different unsaturations in the parent oils. The crosslink density of the resins was enhanced by adding polyisocyanate. The glass transition temperature (Tg) of the hybrids was determined by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Resistance to thermal degradation was assessed by thermogravimetric analysis (TGA). The fracture toughness and energy (Kc and Gc, respectively) were determined on compact tension specimens at room temperature. Incorporation of AESO and AELO reduced the Tg of VE along with slight reductions in the Kc and Gc data. The Tg reduction was less for AELO than AESO which was attributed to the higher functionality of AELO compared to AESO. Urethane crosslinking of VE (VEUH) prominently enhanced the Tg. Modification of VEUH with AES(L)O enhanced the Tg due to additional crosslinks. Urethane hybridisation was associated with a strong decrease in both Kc and Gc compared to those of the parent VE. Kc and Gc of VEUH did not change practically as a function of blending with AES(L)O. Incorporation of AES(L)O reduced the resistance to thermal degradation of both VE and VEUH.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3