Affiliation:
1. Department of Mechanical Engineering, National Institute of Technology Rourkela, India
Abstract
In the present work, a combination of experimental and numerical procedure is proposed to study the effects of different hygrothermal conditions on the creep strain, viscoelastic properties of nanocomposites, and mechanical properties of such nanocomposite-based carbon fiber–reinforced polymer (CFRP) hybrid composite materials. Ultrasonic probe sonicator is used to randomly disperse the multiwalled carbon nanotubes into an epoxy to minimize agglomerations. Dynamic mechanical analysis is employed to conduct the creep tests under different hygrothermal conditions of such nanocomposite samples. The Findley power law is used to obtain the long-term creep behavior of nanocomposite materials. Prony series is used to determine the viscoelastic properties of nanocomposite material in the frequency domain. Coefficient of moisture expansion (CME) is independent of moisture concentration; thus, CME of the nanocomposite is also determined. Strength of materials and Saravanos–Chamis micromechanics (SCM) have also been utilized to obtain the mechanical properties of such hybrid composite materials under different hygrothermal conditions. It has been found that the inclusion of multiwalled carbon nanotubes in the nanocomposite and hybrid composites improves storage modulus and loss factor (i.e., tan δ) compared to the conventional CFRP-based composite materials under hygrothermal conditions.
Subject
Materials Chemistry,Polymers and Plastics,Ceramics and Composites
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献