Force coefficient characterization in machining of UD-CFRP using numerical-analytical approach

Author:

Xiao Jianzhang12ORCID,Gao Ning1,Wang Guifeng12,Huang Pengcheng12,He Jiabo3

Affiliation:

1. College of Mechanical and Electrical Engineering, Jinhua Polytechnic, Jinhua, China

2. Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province, Jinhua Polytechnic, Jinhua, China

3. Department of Mechanical Engineering, Hangzhou City University, Hangzhou, China

Abstract

A numerical-analytical approach was utilized to construct a predictive model of cutting force for machining unidirectional carbon fiber reinforced polymer (UD-CFRP) laminates. The force coefficients in the model, which include friction angle, shear plane angle, shear strength, and rebound height, can be characterized by the fiber orientations ranging from 0° to 180°. The accuracy of the model was confirmed through experimental verification. The results indicate good agreement between the predicted and experimental values, with relative errors below 14.8%, except for the thrust force at 90°. Additionally, the study examined the influence of rake angle and flank angle on the cutting force, revealing two critical points in the predicted cutting force curve throughout the fiber orientation. These turning points shifted with changes in the rake angle. For instance, the value of the first critical point changes from 60° to 45° when the rake angle range shifts from [0°, 5°] to [10°, 15°]. This indicates that a larger rake angle facilitated an earlier transformation of chip formation mode, leading to a decrease in cutting force. Furthermore, the cutting force decreased as the rake angle increased between the two turning points. The impact of the flank angle on the cutting force was determined to be minimal, and the turning points’ positions remained consistent as the flank angle increased.

Funder

Scientific Research and Cultivation Fund Project of Hangzhou City University

Special Project of Center for Scientific Research and Development in Higher Education Institutes of Ministry of Education

Natural Science Foundation of Zhejiang Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3