The exploration of the inverse vulcanization mechanism of tung oil by controlling the oxygen and moisture presence during reactions

Author:

Lyu Ya1ORCID,Su Qin1

Affiliation:

1. School of Chemical Engineering, East China University of Science and Technology, Shanghai, China

Abstract

Inverse vulcanization is a cost-effective method for producing high sulfur-content copolymers by combining elemental sulfur with organic monomers, which has rapidly gained popularity due to its simplicity of synthesis and wide range of applications. Although numerous examples of sulfur-rich copolymers have been synthesized at different reaction rates and temperatures using various monomers, the precise reaction mechanism remains unclear. In this paper, we used tung oil containing conjugated triene as a monomer to synthesize sulfur-rich copolymers under six different reaction conditions and investigate the effects of oxygen and moisture. Our study, which employed DSC, XRD, 1H NMR, and XPS characterization methods, revealed that oxygen accelerated the reaction rate and decreased the free sulfur content of the products, while moisture shortened the gel times but increased the free sulfur content. These findings confirm that reverse vulcanization involves two simultaneous mechanisms: the free radical mechanism and the anion mechanism. With regard to the radical mechanism, we discuss the source, ease, and reactivity of radicals and show that the creation of radicals depends on the second monomer rather than sulfur. Tung oil not only acts as a comonomer in the reaction but also plays an initiating role in promoting the dissociation of sulfur chains to generate free radicals for addition of non-conjugated double bonds. The effect of the anion mechanism exceeds that of the radical mechanism once certain factors are stimulated, such as the presence of metal ions and sulfide ions. Understanding the detailed mechanisms involved in inverse vulcanization is essential for selecting optimal monomers, which can enhance not only the synthesis process but also the properties of sulfur-rich materials.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3