Preparation and characterization of pH-responsive ionic crosslinked microparticles of mercaptopurine to target ulcerative colitis

Author:

Hameed Huma12,Rehman Khurram3ORCID,Hameed Anam4,Qayuum Abdul5

Affiliation:

1. Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan

2. Faculty of Pharmacy, University of Rennes 1, Rennes, France

3. Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan

4. Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, Pakistan

5. Department of Public Health, University of Punjab, Lahore, Pakistan

Abstract

The objective of this study was the preparation of ionically crosslinked 6-mercaptopurine (6-MP) monohydrate microparticles through preparing polyelectrolyte complexes of drug and polymers. Polymers such as chitosan, casein, and carrageenan were used to prepare crosslinked microparticles, and sodium tripolyphosphate was used as crosslinker. Microparticles were characterized for their flow behavior, compressibility, percentage yield, micromeritic, and entrapment efficiency. Scanning electron microscopy was conducted to understand the surface morphology of the microparticles, and the result was correlated with the swelling index and percentage drug release. Mathematical modeling of drug release in order to determine the drug release kinetics was also determined to understand the mechanism involving the release of 6-mercaptopurine from the microparticles. The ionic crosslinked microparticles were in the range of 664 μm–798 μm particle size having good flow and compressibility properties with percentage yield were found to be from 77.5% to 87.5% in range. The entrapment efficiency for the formulations were found to be from 63.5% to 83.5%, with MCP-5 gave maximum entrapment efficiency of 83.5%. In vitro swelling and drug release studies were in accordance with the polymer properties following zero-order model with super-case transport II.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3