Crystallinity of Polypropylene-Silica Ash Composites Affected by the Mixing Conditions – DSC Studies

Author:

Chaudhary D.S.1,Jollands M.C.1,Cser F.1

Affiliation:

1. Rheology and Materials Processing Centre, Royal Melbourne Institute of Technology University, Melbourne, VIC 3000, Australia

Abstract

For particulate polymeric composites, mixing is a crucial step to be optimised; and in the process-control stage, identification of the factors that influence mixing is important for a deeper understanding of the composite mechanical performance. A mixing study of a hydrophobic polymer matrix (polypropylene) filled with a hydrophilic particulate-filler (silica from rice husk ash) was carried out using a batch mixer at a constant filler fraction of 20% (w/w). The study involved varying the mixing-time, screw speed and mixing-chamber temperature used to prepare the composites. Mechanical analysis of the samples showed that the tensile strength and modulus values were dependent on the mixing conditions. Furthermore, DSC studies of the samples revealed that the degree of crystallinity was also affected by the mixing conditions. The observed increase in the tensile strength was attributed to the increased filler-matrix interactions; however, there was difficulty in analysing how the mixing conditions influenced the tensile strength because of a lack of extensive data on filler dispersion. The increase in crystallinity, as affected by mixing conditions, was thought to improve the filler-matrix interaction leading to an increased tensile modulus. Interestingly, samples showed permanent morphological changes after their previous thermal histories were erased, suggesting that there was significant interaction between the silica ash particles and the polymer matrix, even though they are quite incompatible. A statistical analysis based on the tensile data was carried out to optimise the state of mixing. The results indicate that (i) the optimised state of mixing correlated with higher crystallinity and (ii) changes in the parameters of physical mixing might significantly affect the homogeneity and crystallinity, both of which are related to the mechanical performance of the composites. Furthermore, reducing the particle size of the silica ash was also found to increase the crystallinity, which was in turn related to the improved tensile properties of the composites. The investigation attempts to highlight that for apparent incompatible system, homogeneity is very important but it alone cannot explain the moderate filler-matrix interactions and filler bonding characteristics that are known to contribute to improved tensile properties. Somehow, composites mechanical properties are improved by optimising the physical mix-state, and by modifying the particle size but it seems like that the net effect is due to increased interactions. In any case, it is clear that optimisation of interactions can be achieved by obtaining a homogeneous phase.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3