Polyaniline–calcium titanate perovskite hybrid composites: Structural, morphological, dielectric and electric modulus analysis

Author:

Bibi Ariba1ORCID,Shakoor Abdul1,Niaz Niaz Ahmad1

Affiliation:

1. Department of Physics, Bahauddin Zakariya University, Multan, Pakistan

Abstract

This paper reports hybrid composites based on polyaniline (PANI) and calcium titanate (CaTiO3) perovskite as a nanofiller synthesized by in-situ polymerization technique. Their structure and morphology were investigated by X-ray diffraction analysis and scanning electron microscopy. The XRD analysis shows that the addition of CaTiO3 in polyaniline reduced the amorphous structure of polyaniline transforming it into semi-crystalline nature, which agrees well with the higher conductivity. Scanning electron microscopy of composites showed a more compact and homogenous structure with uniform distribution of CaTiO3 in the polymer matrix. Dielectric parameters such as dielectric constant, loss factor, and dielectric loss, real and imaginary parts of electric modulus were measured and evaluated as a function of frequency and temperature as well. The variation of dielectric properties and ac conductivity reveals that the dispersion is due to the Maxwell-Wagner type of interfacial polarization. The observed ac conductivity behavior of polyaniline in the presence of calcium titanate was discussed in the framework of Jonscher’s power law. The result showed that ac conductivity increases with the rise of the frequency of applied field and temperature analogous to the semiconducting behavior of composites. Temperature-dependent behavior of frequency exponent seems to obey correlated barrier hopping conduction mechanism. The relaxation behavior of the synthesized samples was analyzed by the electric field modulus and was found to decrease with temperature and CaTiO3 content and increase with frequency.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3