Affiliation:
1. Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Arlington, TX, USA
2. Institute for Predictive Performance and Methodologies, The University of Texas at ArlingtonResearch Institute, Fort Worth, TX, USA
Abstract
The aviation and automobile industries have recently depended on thermoset epoxy-based prepreg as a raw material for manufacturing composites. Since prepregs have a limited out-life (i.e., the maximum storing time allowed at room temperature), they must be stored in refrigerators at low temperatures. If not maintained, they can often adversely affect the desired quality of the final product. Prepregs are often discarded once the prepreg out-life ends, leading to a loss of millions of dollars and a detrimental impact on the environment. Therefore, it is necessary to develop a simple method to monitor prepreg aging/degradation in order to ensure its usability or repurpose prepreg usage. In this study, we used broadband dielectric spectroscopy to monitor the degradation state of the glass fiber/epoxy prepreg sample stored at room temperature, and the data has been used to predict the mechanical performance of the final manufactured composite part. The frequency-based nondestructive dielectric measuring technique was used to calculate the dielectric strength and relaxation time of the prepregs. The dielectric strength decreased and relaxation time increased with aging, allowing the aging progression to be captured. Furthermore, with aging, the real permittivity value changes to a lower value and the relaxation peak in imaginary permittivity with respect to frequency shifts to a lower frequency. The physics behind this dielectric measurement method has been understood in the context of analyzing the prepreg’s cure kinetics parameters, which has been investigated using differential scanning calorimetry. Overall, this simple dielectric-based monitoring technology will provide confidence in the future use of degraded or out-of-life raw material systems for manufacturing.
Subject
Materials Chemistry,Polymers and Plastics,Ceramics and Composites
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献