Application of a dual depressant system and microwave irradiation for flotation-based Separation of Polyethylene Terephthalate, Polyvinyl Chloride, and Polystyrene Plastics

Author:

Jabbari Salva1,Ostad Movahed Saeed1ORCID,Jourabchi Shahab1

Affiliation:

1. Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

The absence of an effective technique for the individual separation of plastics within a plastic mixture remains a paramount concern in the domain of plastic waste management. Recently introduced, the floatation technique has emerged as a method for segregating specific plastics, such as polystyrene (PS), polyethylene terephthalate (PET), and polyvinyl chloride (PVC), from mixed waste streams. This separation process involves the utilization of traditional dual depressants (chemical agents). The study investigated the impact of pre-microwave irradiation of plastic surfaces at varying microwave output powers (20-100%) on the floatation behavior of each plastic. Additionally, the influence of depressant concentration (200-1600 mg/L) on plastic floatation was examined. The results revealed that pre-microwave irradiation at different output powers and varying depressant concentrations significantly affected the sink-float behavior of the studied plastics, with the exception of PET. It was observed that the microwave irradiation altered the number and type of active sites on the plastics' surfaces. Notably, there was no discernible regular trend in the flotation of plastic with an increase in microwave output power. The outcomes were substantiated by conventional identification techniques, including contact angle (θ) measurement, scanning electron microscopy (SEM) images, and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) spectra analysis. Equations derived through the use of the design of experiment software (Design-Expert®) demonstrated a commendable alignment between the predicted and actual values of plastic flotation. This underscores the efficacy of the applied methodology in forecasting and validating the outcomes of the floatation process.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3