Impact and acoustic emission performance of polyvinylidene fluoride sensor embedded in glass fiber-reinforced polymer composite structure

Author:

Jain Anjana1ORCID,Minajagi Shivkumar1,Dange Enoos1,Bhover Sushma U1,Dharanendra YT1

Affiliation:

1. Materials Science Division, National Aerospace Laboratories, Bangalore, Karnataka, India

Abstract

Smart materials find vital applications in the aerospace industry due to their ability to adapt to surrounding conditions according to design requirements and applicability. Piezoelectric materials are commonly used under the category of smart materials for transducer applications. Among piezoelectric materials, piezo polymer polyvinylidene fluoride (PVDF) is widely used for structural health monitoring (SHM) applications of composite structures, acoustic emission (AE) sensor, accelerometer, strain gauge, pressure sensor, and so on because of its outstanding piezo stress constant ( g 33), piezo strain constant ( d 33), flexibility, and lightweight. In this article, glass fiber-reinforced polymer (GFRP) laminates have been prepared by embedding the PVDF sensor into GFRP for the first time. A detailed study has been done on the behavior and characterization of the PVDF sensor embedded in GFRP. The PVDF sensors embedded in laminates were subjected to impact test, where a constant weight of 5.5 kg was dropped from a height of 10–60 mm in the interval of 10 mm, and the voltage response of the PVDF sensor was recorded. Sensitivity analysis and AE test of the PVDF sensor in GFRP were also carried out. This is useful for various aerospace applications especially for SHM of aircraft.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Reference22 articles.

1. Sensitivity of polyvinylidene fluoride films to mechanical vibration modes and impact after optimizing stretching conditions

2. Impact Damage Detection in Composite Laminates Using PVDF and PZT Sensor Signals

3. Chrysocoris NA, Mainetti S, Ruotolo E, et al. Conduct experimental activities on performance of sensor-equipped composite elements. Technical Report, University of Manchester, UK, 2013, pp. 4–7.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3