Experimental and artificial neural network approach for prediction of dynamic mechanical behavior of sisal/glass hybrid composites

Author:

Ornaghi Heitor Luiz1ORCID,Monticeli Francisco M2,Neves Roberta Motta3,Zattera Ademir José4,Amico Sandro Campos3ORCID

Affiliation:

1. Federal University for Latin American Integration (UNILA), Foz do Iguaçu, Brazil

2. Department of Materials and Technology, School of Engineering, São Paulo State University (Unesp), Guaratinguetá, Brazil

3. Postgraduate Program in Mining, Metallurgical and Materials Engineering (PPGE3M), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

4. Postgraduate Program in Engineering of Processes and Technologies (PGEPROTEC), University of Caxias do Sul (UCS), Caxias do Sul, Brazil

Abstract

The dynamic mechanical behavior (storage modulus, loss modulus, and tan δ) of hybrid sisal/glass composites was investigated in the temperature range of 30–210 °C, for two different volume percentages of reinforcement along with the different ratios of sisal and glass fibers. Based on the experimental outcome, an artificial neural network (ANN) approach was used to predict the dynamic mechanical properties followed by a surface response methodology (SRM). The ANN analysis showed an excellent fit with the storage modulus, loss modulus, and tan δ experimental data. In addition, the fitted curves with the ANN approach were used to propose equations based on SRM. The simulation result has shown that the ANN is a potential mathematical tool for the structure–property correlation for polymer composites and may help researchers in the development and application of their data, reducing the need for long experimental campaigns.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3