Effects of silane coupling agent modifications of hollow glass microspheres on syntactic foams with epoxy matrix

Author:

Li Rui1,Fan Guisen1,Wang Peng1,Ouyang Xiao1,Ma Ning1,Wei Hao1ORCID

Affiliation:

1. Key Laboratory of Ultra-light Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China

Abstract

A syntactic foam was prepared from an epoxy resin matrix and modified hollow glass microsphere fillers. Modification by silane coupling agents with different molecular structures was analyzed, and the optimal content of the silane coupling agent was determined. The results demonstrated that all silane coupling agents enhanced the adhesion between the hollow glass microspheres and epoxy resin matrix, resulting in enhanced water absorption, compressive performance, tensile performance, and bending performance compared to those prepared using unmodified hollow glass microspheres. Among silane coupling agents with different end groups, the one with a sulfhydryl end group exhibited optimal modification for hollow glass microspheres. Among the silane coupling agents with different backbone structures, the one with silanol groups exhibited the optimal modification of hollow glass microspheres. Additionally, the performance of the syntactic foams was optimal when 6% of the silanol-containing coupling agent was used. The results demonstrated that syntactic foams prepared with hollow glass microspheres modified by silane coupling agents exhibited improvements in water absorption, compressive performance, tensile performance, and bending performance, compared with those prepared using unmodified hollow glass microspheres. Among silane coupling agents with different end structures, the one with a sulfhydryl group as end group showed the best modification effect on hollow glass microspheres. The water absorption was 0.35%, the compressive strength was 62.15 MPa, the tensile strength was 40.15 MPa, and the bending strength was 53.17 MPa. Among silane coupling agents with different backbone structures, the one with silanol groupsbonds showed the best results. Its compressive strength was up to 64.15 MPa, the tensile strength was 35.47 MPa, and the bending strength was 53.99 MPa.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3