Matrix Cracking and Delaminations in Orthotropic Laminates Subjected to Freeze-Thaw: Model Development

Author:

Roy Samit1,Nie G.H.1,Karedla R.2,Dharani L.2

Affiliation:

1. Mechanical and Aerospace Engineering Department, Oklahoma State University

2. Mechanical and Aerospace Engineering Department, University of Missouri-Rolla

Abstract

With the increasing use of fibre composites in applications such as cryogenic liquid hydrogen tanks and repair/retrofitting of bridges, the diffusion and freezing of moisture to form ice is an issue of growing importance. The volumetric expansion of water when it freezes to form ice results in stress concentrations at the inclusion tip that may synergistically interact with the residual tensile stresses in a laminate at low temperatures to initiate a crack. In addition, understanding the long-term effect of daily and/or seasonal freeze-thaw cycling on crack growth in a laminate is of vital importance for structural durability. The objective of this paper is to establish a theoretical framework for the calculation of the stress intensity factor (KI) of a pre-existing crack in a composite structure due to the phase transition of trapped moisture. The constrained volume expansion of trapped moisture due to freezing is postulated to be the crack driving force. The principle of minimum strain energy is employed to calculate the elastic field within an orthotropic laminate containing an idealized elliptical elastic inclusion in the form of ice. It is postulated that a slender elliptical elastic inclusion can be used to approximate the stress field at the crack face, which can subsequently be used to calculate the stress intensity factor, KI, for the crack. The verification of the analytical model predictions and some potential applications will be published in a separate paper.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

Reference16 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3