Affiliation:
1. Molecular Chemistry and Organic Materials Team, Faculty of Science, Moulay Ismaïl University, Meknes, Morocco
Abstract
Flexible polyurethane foams (FPUFs) are versatile materials used in various applications due to their unique properties. Understanding the phase separation behavior in FPUFs is crucial for tailoring their properties to specific applications. In this study, we investigated FPUFs with varying levels of urea phase connectivity using small-angle X-ray scattering (SAXS), Fourier transform infrared spectroscopy (FTIR), and wide-angle X-ray scattering (WAXS). We explored the effect of water, lithium chloride, and isocyanate structures on the phase separation behavior by employing these methods. An increase in water content in the FPUF formulation resulted in a higher amount of formed urea and larger globular size of urea aggregates. Incorporating LiCl into FPUF formulations demonstrated its ability to prevent hydrogen bond formation, leading to alterations in the urea phase. Moreover, we found that foams prepared with asymmetric diisocyanates showed difficulty in forming the urea phase, while foams prepared with symmetric and aliphatic diisocyanates readily formed the urea phase. Our study sheds light on the morphology of the urea phase, the packaging nature of the hard segment, and the hydrogen bonding behavior of the FPUFs. These findings contribute to a better understanding of phase separation in FPUFs and offer insights into tailoring their properties for specific applications.
Subject
Materials Chemistry,Polymers and Plastics,Ceramics and Composites