Surface and Catalytic Properties of γ-Irradiated Fe2O3/Al2O3 Solids

Author:

El-Shobaky G.A.1,Ahmad A.S.2,Ghozza A.M.3,El-Khouly S.M.1

Affiliation:

1. National Research Centre, Dokki, Cairo, Egypt

2. Chemistry Department, Faculty of Science, Cairo University, Egypt

3. Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt

Abstract

Two specimens of Fe2O3/Al2O3 solids were prepared by impregnating a known mass of finely-powdered Al(OH)3 with calculated amounts of ferric nitrate solutions followed by drying at 120°C and calcination in air at 400°C for 4 h. The mixed solids thus prepared had the nominal molar compositions 0.06Fe2O3/Al2O3 and 0.125Fe2O3/Al2O3 (FeAl-I and FeAl-II). The surface and catalytic properties of various irradiated solids (15–200 Mrad) were studied using nitrogen adsorption at −196°C and catalysis of CO oxidation by O2 at 150–280°C using a static method. The results obtained revealed that γ-irradiation at doses between 15 and 80 Mrad resulted in a progressive decrease (7–22%) in the surface area of the treated solids. Treatment with doses above this limit exerted an opposite effect. γ-Irradiation also resulted in a widening of the pores of the irradiated adsorbents. The catalytic activity of the FeAl-I solid was influenced slightly by γ-rays while the FeAl-II catalyst was significantly modified by this treatment. The reaction rate constant per unit surface area of the catalytic reaction conducted at 280°C over the FeAl-II solid decreased (65%) by exposure to doses up to 120 Mrad, then increased on increasing the dose above this limit. This did not modify the mechanism of the catalytic reaction, but changed the number of catalytically-active sites taking part in chemisorption and catalysis of the CO oxidation reaction without affecting their energetic nature.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3