Thermodynamic properties in ternary system of NH4HCO3–H2O–ethanol based on antisolvent method to strengthen crystallization of carbonized ammonia

Author:

Zhang Yu1,Feng Dongdong1,Gao Jianmin1ORCID,Du Qian1,Wu Shaohua1

Affiliation:

1. Harbin Institute of Technology, China

Abstract

One of the main challenges of the ammonia-based CO2 capture process is how to further reduce the regeneration energy consumption. An antisolvent crystallization method was proposed to strengthen the crystallization process of carbonized ammonia, and heating the crystal products instead of rich solution can greatly reduce renewable energy consumption. The main component of the crystal product was NH4HCO3 analyzed by X-ray diffraction. Therefore, it is very important to study the thermodynamic properties of ammonium bicarbonate in the ternary system of NH3–H2O–ethanol. In this paper, the solubility curves under different temperature and solvent compositions were determined by static method and the mathematical model of solubility was established. The effects of the addition of ammonium carbamate which was produced in the initial stage of the CO2 absorption process and the addition of ammonia on the solubility in ternary system of NH4HCO3–H2O–ethanol were studied. The dissolution heat was also calculated in the end. The research of this article has a guiding significance for the antisolvent method to strengthen the crystallization of carbonized ammonia of ammonia-based carbon capture technology. It is helpful to further strengthen the crystallization process of low carbonized ammonia and improve the crystallization yield.

Funder

New Generation of Coal Conversion and Power Technology Facing the Sino-US Advanced Coal Technical Cooperation

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3