Removal of nitrobenzene from aqueous solution by adsorption onto carbonized sugarcane bagasse

Author:

Wang Dunqiu1,Shan Huijun2,Sun Xiaojie1,Zhang Hongxia1,Wu Yanhua3

Affiliation:

1. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, China

2. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China

3. Hezhou Solid Waste and Hazardous Chemical Environmental Management Center, Hezhou, China

Abstract

A sorbent was prepared by charring sugarcane bagasse (SCB) and used to remove nitrobenzene from aqueous solution. The surface area, morphology, and functional groups of the adsorbent were characterized by Brunauer–Emmett–Teller method, scanning electron microscopy, and Fourier transforms infrared spectroscopy. Analysis indicated that oxygen-containing functional groups, such as C = O, –OH, –COOH, and C–O–C, may be involved in the adsorption process. The adsorption of nitrobenzene was investigated under different operating conditions, including adsorbent dosage, initial nitrobenzene concentration, pH, and contact duration. Four kinetic models were applied to describe the adsorption process. Results revealed that the optimal sorbent mass was 0.3 g/50 mL at pH 5.8 and 25°C. The kinetic data obeyed the pseudo-second-order kinetic model ( R2 > 0.9965). In addition, Langmuir and Freundlich isotherm models were employed to describe the adsorption equilibrium. The Freundlich model presented better fitting for the adsorption equilibrium, suggesting that the carbonized SCB surface had a heterogeneous nature. The maximum adsorption capacities calculated by the Langmuir model were 38.27, 41.72, and 44.70 mg/g at 25°C, 35°C, and 45°C, respectively. The calculated values of ΔG0 and ΔH0 indicated the spontaneous and exothermic nature of the adsorption process at the considered temperature range. The adsorption mechanism of nitrobenzene onto carbonized SCB cannot be described either as physical adsorption or chemisorption. This study demonstrated that SCB biochar is a potential sorbent for removing nitrobenzene from aqueous solutions.

Funder

Natural Science Foundation of Guangxi Province

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3