Epoxidation of cyclopentene by a low cost and environmentally friendly bicarbonate/peroxide/manganese system

Author:

Hincapie Beatriz1,Llano Sandra M1,Garces Hector F2,Espinal Diego1,Suib Steven L3,Garces Luis J1

Affiliation:

1. Laboratorio de Catálisis Industrial, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Colombia

2. School of Engineering, Brown University, USA

3. Department of Chemistry U-3060, University of Connecticut, USA

Abstract

The system hydrogen peroxide/sodium bicarbonate/manganese sulfate was used for the first time to epoxidize cyclopentene. Effects of parameters such as type and amount of solvent, ratio of hydrogen peroxide and manganese sulfate to cyclopentene, presence of additives, and reaction time and temperature on the selectivity to cyclopentene oxide were evaluated. Gas chromatography was used to quantify residual cyclopentene and produced cyclopentene oxide using the internal standard method. Type and amount of solvent, addition method, and temperature were important factors to increase the selectivity to cyclopentene oxide. Unlike previous reports on epoxidation of different substrates, additives like sodium acetate and salicylic acid did not improve the selectivity to cyclopentene oxide. One time, single-step addition of hydrogen peroxide/sodium bicarbonate to the solution of cyclopentene/solvent/manganese sulfate produced more cyclopentene oxide than stepwise addition. The maximum selectivity obtained was 56%, possibly due to the high reactivity of cyclopentene that causes the formation of oxidation products different to cyclopentene oxide, which were not detected in the analyzed phase.

Funder

Office of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical, Biological and Geological Sciences

Universidad de Antioquia

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3