Assessment of reaction between thorium and polyelectrolyte nano-thin film using Box–Behnken design

Author:

Aslani Mahmoud Ali Asghar1,Celik Fatih1,Mermer Omer2,Kutahyali Aslani Ceren1

Affiliation:

1. Department of Nuclear Technology, Institute of Nuclear Sciences, Ege University, Izmir, Turkey

2. Department of Electrical & Electronic Engineering, Ege University, Izmir, Turkey

Abstract

Sandwich type polyelectrolyte nano-thin films (PENTFs) were prepared by using polyallylamine hydrochloride and polyacrylic acid from layer-by-layer assembly process with spin coating system. Their nanostructures have been studied by scanning electron microscope, atomic force microscope, and attenuated total reflectance Fourier transform infrared spectroscopy. In order to understand the effects of the initial concentration of thorium, initial solution pH, temperature, and contact time on the reaction between thorium and PENTF, an experiment data set was designed according to Box–Behnken model. The analysis of variance calculations for regression model were carried out in 95% confidence level and were checked for fitting experimental data and predicted values. The correlation coefficient value ( R2) obtained as 94% showed that there was a correlation between the predicted and the observed values. The optimum pH, temperature, initial concentration of thorium, and interaction time in studied ranges were found as 2.81, 35℃, 160 mg·L−1, and 120 min, respectively. At these conditions thorium (IV) ions adsorption yield was obtained as 89 ± 2%. The Freundlich, Langmuir, and Dubinin–Radushkevich isotherms were used to investigate the characteristics of the process. These characteristics data imply that the Freundlich model fits better than the Langmuir model for the Th (IV) sorption onto PENTFs with KF and n values were found to be 20.6 mg·g−1 and 1.08 L·mg−1, respectively. The thermodynamic parameters were also computed as negative Δ H value suggest that adsorption of Th (IV) is exothermic nature. The calculated negative and positive values of Δ G indicate that the sorption process is favorable (energetically) while running below 40℃ and over this point the process status change to non-spontaneous, respectively.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3