Novel kinetics model for adsorption of pollutant from wastewaters onto zeolites. Kinetics of phenol adsorption on zeolite-type silicalite

Author:

Petkovic Sandra1,Adnadjevic Borivoj2,Jovanovic Jelena2

Affiliation:

1. Mining institute Ltd, Serbia

2. University of Belgrade, Faculty of Physical Chemistry, Serbia

Abstract

The kinetics of isothermal adsorption of phenol from an aqueous solution onto the zeolite-type silicalite was investigated. Zeolite-type silicalite was synthesized and its basic physico-chemical properties were determined. Isothermal adsorption kinetics curves of phenol on zeolite-type silicalite were measured at temperature range from 283 to 313 K. By applying Friedman’s differential isoconversional method it was found that the adsorption of phenol on silicalite has one rate determining step. By using the ‘model-fitting’ method it was established that the kinetic of adsorption can be described with theoretical kinetic model of the two-dimensional phase-boundary controlled reaction (model R2). The kinetic parameters, activation energy ([Formula: see text]) and preexponetial factor ( lnA = 14.1 min−1) of phenol adsorption were calculated. The thermodynamic parameters, standard enthalpy (Δ H*), standard entropy (Δ S*) and standard free Gibbs energy of adsorption (Δ G*) were calculated and discussed. A novel model for the kinetics of pollutant adsorption from wastewaters onto zeolites based on the following: zeolite pores have cylindrical shape with average radius r0, pores in zeolite are filled simultaneously by the model ‘layer by layer’, the rate of phenol adsorption is higher than the rate of the growth of the thickness of the adsorption layer was suggested. It has been found that the adsorption kinetics can be completely described by this kinetic model.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3