Affiliation:
1. Department of Instrumentation and Analytical Science, University of Manchester Institute of Science and Technology, P.O. Box 88, Manchester M60 1QD, UK
Abstract
An ASC/T (Cu2+, Cr6+, Ag and triethylenediamine impregnated) Whetlerite activated carbon sample was exposed to a flow rate of 1 l/min, 0.746 mg/l SO2 in 80% RH air at 22°C for up to 510 min. Samples were subsequently challenged with 2 mg/l HCN in an identical diluent gas stream. Increasing SO2 exposure resulted in accelerated HCN and (CN)2 bed penetration. The basic shapes of the breakthrough profiles were however essentially unchanged. This observation is in accordance with numerical analysis of these results using Hinshelwood's adsorption model, which suggested that the adsorption rate constant was not significantly affected by SO2 but rather the pollutant exposure resulted in the number of active centres on the carbon surface being reduced and the effective bed depth of the sample being shortened. This loss in active centres was thought most likely to result from the reduction of Cr6+ to Cr3+.
Subject
Surfaces and Interfaces,General Chemical Engineering,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献