Biosorption of hexavalent chromium by biochar prepared from the Ceratonia siliqua pod: Kinetic, equilibrium, and thermodynamics studies

Author:

Al-Dalahmeh Yousef1,Hamadneh Imad2ORCID,Aburumman Ghaida3,Al-Mobydeen Ahmed4,Alkhawaldeh Marya2,Abu Shawer Akram2,Ahmed Rania2,Esaifan Muayad5,Al-Dujaili Ammar H.6

Affiliation:

1. Faculty of Pharmacy, Isra University, Amman, Jordan

2. Department of Chemistry, Faculty of Science, University of Jordan, Amman, Jordan

3. Department of Civil Engineering, Faculty of Engineering Technology (FET), Zarqa University, Zarqa, Jordan

4. Department of Chemistry, Faculty of Science, Jerash University, Jerash, Jordan

5. Department of Chemistry, College of Arts and Sciences, University of Petra, Amman, Jordan

6. Hamdi Mango Center for Scientific Research, University of Jordan, Amman, Jordan

Abstract

Ceratonia siliqua pod biochar sample (CBC) was generated in this work from C. siliqua (carob pod waste) biomass (CBM) by slow pyrolysis for 5h at 400°C as an alternative low-cost biosorbent for the removal of Cr(VI). The biosorption parameters that were adjusted were the initial pH (2.0–10.0), temperature (30°C, 40°C, and 50°C), biosorbent dose (0.01–0.03 g/50 mL), initial Cr(VI) concentration (10–100 mg/L), and contact period (0–360 min). The interaction between the surface functional groups on the CBM and CBC and the Cr(VI) ions was found to be the primary mechanism for Cr(VI) sorption via surface complexation and electrostatic interactions, according to the investigation of the pH influence. The Langmuir isotherm was shown to be more well-fitting than the Freundlich and Dubinin-Radushkevich isotherms for the concentration range of 10 to 100 mg/L. The testing results indicated a sorption capacity of 90.909 mg/g of CBM and 131.579 mg/g of CBC. According to kinetic investigations, the absorption of Cr(VI) ions onto CBM and CBC was defined in pseudo-second order. The findings of thermodynamic investigations showed that the biosorption of Cr(VI) ions onto CBM and CBC was an exothermic, spontaneous process. These findings demonstrated that, even for high concentrations of Cr(VI) in industrial wastewater, CBM and CBC could be viable, affordable alternatives as adsorbents.

Funder

Scientific Research and Innovation Support Fund, Ministry of Higher Education, Jordan

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3