Application of treated eggplant peel as a low-cost adsorbent for water treatment toward elimination of Pb2+: Kinetic modeling and isotherm study

Author:

Karimi Darvanjooghi Mohammad Hossein1,Davoodi Seyyed Mohammadreza2,Dursun Arzu Y3,Ehsani Mohammad Reza4,Karimpour Iman5,Ameri Elham5

Affiliation:

1. Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2. Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 8156-83111, Iran

3. Department of Environmental Engineering, Firat University, 23100 Elazig, Turkey

4. Department of Chemical Engineering, Isfahan University of Technology, Isfaha, 84156-83111, Iran

5. Department of Chemical Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran

Abstract

In this study, treated eggplant peel was used as an adsorbent to remove Pb2+ from aqueous solution. For this purpose batch adsorption experiments were performed for investigating the effect of contact time, pH, adsorbent dose, solute concentrations, and temperature. In order to assess adsorbent’s physical and chemical properties, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy were used. The results showed that the adsorption parameters for reaching maximum removal were found to be contact time of 110 min, adsorbent dose of 0.01 g/ml, initial lead(II) concentration of 70 ppm, pH of 4, and temperature of 25°C. Moreover, for the experiments carried out at pH > 4 the removal occurred by means of significant precipitation as well as adsorption. Furthermore, these results indicated that the adsorption followed pseudo-second-order kinetics model implying that during the adsorption process strong bond between lead(II) and chemical functional groups of adsorbent surface took place. The process was described by Langmuir model (R2 = 0.99; maximum adsorption capacity 88.33 mg/g). Also thermodynamics of adsorption was studied at various temperatures and the thermodynamic parameters including equilibrium constant (K), standard enthalpy change, standard entropy change, and standard free energy changes were obtained from experimental data.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3