Catalytic Decomposition of H2O2 over a γ-Irradiated CuO–ZnO/Al2O3 System

Author:

Fagal Gehan A.1,Attia Amina A.1,El-Shobaky Hala G.2

Affiliation:

1. Department of Physical Chemistry, National Research Centre, Dokki, Cairo, Egypt

2. Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt

Abstract

A CuO–ZnO/Al2O3, catalyst sample was prepared by wet impregnation methods using Al(OH)3, zinc and copper nitrate solutions followed by drying at 110°C and calcination at 600°C. The nominal molar composition of the resulting material was calculated to be 0.25CuO · 0.03ZnO/Al2O3 Samples of this solid were exposed to varying dosages of γ-irradiation (20–160 Mrad) and the effect of such treatment on their surface characteristics and catalytic activity investigated using nitrogen adsorption studies at −196°C and studies of the decomposition of H2O2 at 30–50°C. The results obtained indicate that doses of γ-rays up to 80 Mrad had no significant effect on the specific surface area. SBET, of the supported mixed oxide material although this quantity increased by 20% when the solid was exposed to γ-irradiation doses of 160 Mrad. In contrast, such treatment brought about a progressive decrease in the catalytic activity of the treated catalyst samples. Thus, the reaction rate constant (k) of the catalyzed reaction measured at 50°C diminished from 8 × 10−2 min−1 to 0.3 × 10−2 min−1 on exposure of the supported mixed oxide material to a dose of 160 Mrad. What was surprising was that the activation energy (δE) of the catalytic reaction decreased as a function of the dose employed whereas it should have been expected to increase in the light of the observed decrease in the catalytic activity. This apparent discrepancy was resolved by recalculating the values of ΔE taking into account any possible changes in the pre-exponential factor of the Arrhenius equation brought about by γ-irradiation. The observed decrease in the catalytic activity due to treatment with γ-rays was attributed, mainly, to the enhanced removal of Brönsted acid centres by the action of such irradiation.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3