Effect of Li2O Doping on the Surface and Catalytic Properties of the Cr2O/Al2O3 System

Author:

El-Shobaky G.A.1,Ghozza A.M.2,El-Shobaky H.G.3

Affiliation:

1. Department of Physical Chemistry, National Research Centre, Dokki, Cairo, Egypt

2. Department of Chemistry, Faculty of Science, Zagazig University, Egypt

3. Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt

Abstract

Two Cr2O3/Al2O3 samples with the nominal compositions 0.06Cr2O2/Al2O3 and 0.125Cr2O3/Al2O3 (AlCr-I and AlCr-II, respectively) were prepared by mixing a known amount of finely powdered Al(OH)3 with calculated amounts of CrO3, followed by drying at 120°C and calcination at 700°C and 800°C. Doped solid specimens were prepared by treating Al(OH)3 samples with known amounts of LiNO3 dissolved in the minimum amount of distilled water prior to mixing with CrO3. Dopant concentrations of 0.75, 1.50, 3.00 and 6.00 mol% Li2O were employed. The surface and catalytic properties of the pure and doped solids thus prepared were investigated using nitrogen adsorption at −196°C and studies of the catalysis of CO oxidation by O2 over the solid specimens at 300–400°C. The results of such studies showed that Li2O doping followed by calcination at 700°C led to a maximum increase in the specific surface area, SBET, of 26% for AlCr-I and of 55% for AlCr-II when these samples were doped with 3.00 mol% Li2O. The reverse effect was found when the calcination temperature was increased to 800°C, where a decrease of 34% in the SBET value of the AlCr-II sample doped with 3.00 mol% Li2O was detected. The catalytic activities measured at 350°C over the pure and doped solids decreased on increasing the dopant concentration, the maximum decrease in such activity being ca. 33% and 50%, respectively, for the AlCr-I and AlCr-II samples calcined at 700°C. Doping led to noticable changes in the magnitude of the activation energy for the catalytic reaction. Such changes were accompanied by parallel changes in the value of the pre-exponential factor in the Arrhenius equation. These results may indicate that Li2O doping has no effect on the mechanism of the catalytic reaction but modifies (decreases) the concentration of catalytically active sites taking part in chemisorption during the catalysis of CO oxidation by O2.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Reference27 articles.

1. Catalytic activity of γ-irradiated transition metal ions in the decomposition of hydrogen peroxide

2. On a Theory of the van der Waals Adsorption of Gases

3. Damyanov D., Mehandjiev D., Obrtnov T.S. (1975) Proc. 3rd Int. Symp. Heterogeneous Catal., Varna, Shopov D., Andreev A., Petrov L., Eds, Bulgarian Academy of Sciences, Sofia, 1978, p. 191.

4. Catalytic oxidation of CO on Sodium-treated NiO/Al2O3 solid

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3