Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration

Author:

Benzaoui Thouria1,Selatnia Ammar2,Djabali Djaafar3

Affiliation:

1. Ecole Normale Supérieure de Kouba, Algeria; Ecole Préparatoire Sciences Techniques, Algeria

2. Ecole Normale Supérieure de Kouba, Algeria; Ecole Supérieure Polytechnique, Algeria

3. Ecole Normale Supérieure de Kouba, Algeria

Abstract

The use of bottom ash of expired drugs incineration for removal of Cu(II) ions from aqueous solution has been investigated. Analytical techniques have been employed to find characteristics of adsorbent materials. The removal of Cu(II) was conducted in batch system, and the effects of pH, adsorbent dosage, initial concentrations of copper ions, and contact time on adsorption efficiency were studied. Optimum adsorption was achieved at a pH 5 and equilibrium was established within 15 min of the process. The equilibrium adsorption data were analyzed using eight adsorption isotherm models: Langmuir, Freundlich, Temkin, Redlich–Peterson, Dubinin–Radushkevich, Toth, Harkin–Jura and Halsey isotherms. The energy value obtained by application of Dubinin–Radushkevich model was 2.593 kJ/mol indicating that physisorption was the dominant mechanism of sorption. The values of the correlation coefficient (R2) of the isotherms gave the best fit (>0.99) with the Langmuir, Toth, and Redlich–Peterson isotherms. The adsorption capacity (qm) from the Langmuir isotherm for Cu(II) was found as 13.335 mg/g. The equation constant n of Toth isotherm model is found to be close to 1 (0.945), confirming that the adsorbent studied presents homogeneous surface under conditions used. It is concluded that bottom ash of expired drugs incineration can be used as an effective adsorbent for removing Cu(II) from aqueous solution.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3