Sulfone-modified chitosan as selective adsorbent for the extraction of toxic Hg(II) metal ions

Author:

Al-Ghamdi Youssef O1,Alamry Khalid A1,Hussein Mahmoud A2ORCID,Marwani Hadi M1,Asiri Abdullah M1

Affiliation:

1. King Abdulaziz University, Saudi Arabia

2. King Abdulaziz University, Saudi Arabia; Assiut University, Egypt

Abstract

In this study, a new category of sulfone-modified chitosan derivatives as surface-selective adsorbents for the extraction of toxic Hg(II) metal has been synthesized in good yield. Sulfone-modified chitosan/5–20 based on variable loading of the corresponding phenacyl bromide (5, 10, 15, and 20% with respect to the original weight of the pure chitosan) was synthesized. The β-ketosulfone derivative, namely 1–(4-bromophenyl)-2-(phenylsulfonyl)ethanone, was first prepared by treatment of the corresponding phenacyl bromide with a sufficient amount of sodium benzene sulfinate; its chemical structure was confirmed by spectral analyses, including Fourier transform infrared spectroscopy, 1H-NMR, 13C-NMR, and mass spectrometry. Then, sulfone-modified chitosan/5–20 derivatives were synthesized by the interaction of chitosan with a freshly prepared p-bromo-β-ketosulfone derivative in a mildly acidic aqueous solution using the solution-blending technique. Sulfone-modified chitosan/5–20 derivatives were identified and characterized using common characterization techniques, including Fourier transform infrared spectroscopy, field-emission scanning electron microscope, powder X-ray diffraction, and thermal behaviour. A strong interaction was displayed between chitosan and its corresponding β-ketosulfones in powder X-ray diffraction, which was confirmed by significant 2θ shifts. Sulfone-modified chitosan/5–20 derivatives were detected as catalysts, which efficiently increased the thermal decomposition of pure chitosan. More particularly, the efficiency of sulfone-modified chitosan/5–20 derivatives for Hg(II), Pb(II), Ni(II), Al(III), Sr(II), Cr(III), Fe(III), Zn(II), and Mn(II) detection and adsorption was also investigated using inductively coupled plasma optical emission spectrometry. The sulfone-modified chitosan/5 derivative exhibited the highest adsorption efficiency. The most effective quantitative adsorption onto the sulfone-modified chitosan/5 surface was detected at pH = 2. In addition to that, the adsorption isotherm showed that the adsorption capacity of sulfone-modified chitosan/5 for Hg(II) was 122.47 mg g−1 and that its adsorption isotherm was in agreement with the Langmuir adsorption isotherm.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3