Affiliation:
1. College of Mining and Safety Engineering, Shandong University of Science and Technology, China; School of Safety Engineering, China University of Mining and Technology, China
2. College of Mining and Safety Engineering, Shandong University of Science and Technology, China
Abstract
This paper proposes the development of a novel coagulant for dust suppression in open-cast mines. Specifically, pretreated sodium lignin sulfonate and acrylic acid were first cross-linked, then the graft copolymerization of the intermediate product (the cross-linking product) and acrylamide was conducted and finally the resulting gelatinous substances were crushed. During the reaction process, N,N’-methylene-bis-acrylamide and ammonium persulfate were used as the cross-linking agent and initiator, respectively. Subsequently, the functional groups, crystalline structure, and thermal stability of the dust coagulant were examined by means of Fourier transform infrared spectra measurements, X-ray diffraction spectra measurements, and differential scanning calorimeter analysis. Moreover, single-factor experiments were conducted to explore the optimal synthesis condition. According to the experimental results, the coagulant achieved its optimal dust suppression performance under the following conditions: the mass ratio of lignin to acrylic acid was 1:3, the mass ratio of lignin to acrylamide was 2:7, the content of the cross-linking agent was 0.9%, the mass ratio of initiator to acrylamide was 2:100, the reaction temperature was set as 60℃, and the pH value was set as 7. Finally, the coagulant was measured for its swelling kinetics, viscosity, film-forming hardness, peeling strength, and ability to suppress dust. It can be concluded that the coagulant exhibits a very high standard of both dust suppression and wind resistance.
Subject
Surfaces and Interfaces,General Chemical Engineering,General Chemistry
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献