High-surface-area activated red mud for efficient removal of methylene blue from wastewater

Author:

Hu Zhong-Pan12,Gao Ze-Min12,Liu Xinying3,Yuan Zhong-Yong43

Affiliation:

1. National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin, China

2. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China

3. Material and Process Synthesis, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa

4. National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China

Abstract

Red mud was activated by a digestion–precipitation method, resulting in a mesostructure with high surface area, and the activated red mud was further used as the adsorbent for methylene blue removal. The physicochemical properties of the resultant samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry analysis, and nitrogen sorption techniques. Batch studies were measured to investigate the influence factors including adsorbent dosage, contact time, pH, and initial concentration. It was revealed that the activated red mud was highly efficient for removal of methylene blue. Adsorption experiments were found to be better achieved in faintly acidic and alkaline conditions, where the adsorption capacity of activated red mud and activated red mud-200 reached 232 and 274 mg/g at pH 7.0, respectively. Langmuir, Freundlich, Temkin isotherms, and pseudo-second-order kinetic model fitted the experimental data well, demonstrating an electrostatic interaction mechanism.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3