Cooperative CO2 adsorption promotes high CO2 adsorption density over wide optimal nanopore range

Author:

Chen Lei1,Watanabe Takumi1,Kanoh Hirofumi1,Hata Kenji2,Ohba Tomonori1

Affiliation:

1. Chiba University, Japan

2. National Institute of Advanced Industrial Science and Technology (AIST), Japan

Abstract

Separation of CO2 based on adsorption, absorption, and membrane techniques is a crucial technology necessary to address current global warming issues. Porous media are essential for all these approaches and understanding the nature of the porous structure is important for achieving highly efficient CO2 adsorption. Porous carbon is considered to be a suitable porous media for investigating the fundamental mechanisms of CO2 adsorption, because of its simple morphology and its availability in a wide range of well-defined pore sizes. In this study, we investigated the dependence of CO2 adsorption on pore structures such as pore size, volume, and specific surface area. We also studied slit-shaped and cylindrical pore morphologies based on activated carbon fibers of 0.6–1.7 nm and carbon nanotubes of 1–5 nm, respectively, with relatively uniform structures. Porous media with larger specific surface areas gave higher CO2 adsorption densities than those of media having larger pore volumes. Narrower pores gave higher adsorption densities because of deep adsorption potential wells. However, at a higher pressure CO2 adsorption densities increased again in nanopores including micropores and small mesopores. The optimal pore size ranges of CO2 adsorption in the slit-shaped and cylindrical carbon pores were 0.4–1.2 and 1.0–2.0 nm, respectively, although a high adsorption density was only expected for the narrow carbon nanopores from adsorption potentials. The wider nanopore ranges than expected nanopore ranges are reasonable when considering intermolecular interactions in addition to CO2–carbon pore interactions. Therefore, cooperative adsorption among CO2 in relatively narrow nanopores can allow for high density and high capacity adsorption.

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3