A theoretical model for coal swelling induced by gas adsorption in the full pressure range

Author:

Guo Ping1ORCID

Affiliation:

1. School of Architectural Engineering and Art Design, Chongqing Industry Polytechnic College, Chongqing, China

Abstract

The phenomenon of coal swelling caused by gas adsorption is well known. For Enhanced Coal Bed Methane Recovery and carbon storage, coal swelling induced by gases adsorption may cause significant reservoir permeability change. In this paper, based on the assumption that the surface energy change caused by adsorption is equal to the change in elastic energy of the coal matrix, a theoretical model is derived to describe coal swelling induced by gas adsorption in the full pressure range. The Langmuir constant, coal density, solid elastic modulus, and Poisson’s ratio are required in this model. These model parameters are easily obtained through laboratory testing. The developed model is verified by available experimental data. The results show that the presented model shows good agreement with the experimental observations of swelling. The model errors are within 14% for pure gas, and within 20% for mixed gas. It is shown that this model is able to describe coal swelling phenomena for full pressure range and different gas type including pure gas and mixed. In addition, it is also shown that the errors of the presented model and the Pan’s model are almost the same, but the presented model is solved more easily.

Funder

National Natural Science Foundation of China

Science and Technology Research Program of Chongqing Education Commission

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3