Artificial Neural Network Analysis of Determinants of Tacrolimus Pharmacokinetics in Liver Transplant Recipients

Author:

Du Yue12ORCID,Zhang Yundi3ORCID,Yang Zhiyan1,Li Yue1,Wang Xinyu3,Li Ziqiang4,Ren Lei4,Li Yan1

Affiliation:

1. Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China

2. Department of Pharmacy, Zibo Central Hospital, Zibo, China

3. School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China

4. Department of Liver Transplantation and Hepatic Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China

Abstract

Background The efficacy and toxicity of tacrolimus are closely related to its trough blood concentrations. Identifying the influencing factors of pharmacokinetics of tacrolimus in the early postoperative period is conducive to the optimization of the individualized tacrolimus administration protocol and to help liver transplant (LT) recipients achieve the target blood concentrations. Objective This study aimed to develop an artificial neural network (ANN) for predicting the blood concentration of tacrolimus soon after liver transplantation and for identifying determinants of the concentration based on Shapley additive explanation (SHAP). Methods In this retrospective study, we enrolled 31 recipients who were first treated with liver transplantation from the Department of Liver Transplantation and Hepatic Surgery, the First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital) from November 2020 to May 2021. The basic information, biochemical indexes, use of concomitant drugs, and genetic factors of organ donors and recipients were used for the ANN model inputs, and the output was the steady-state trough concentration (C0) of tacrolimus after oral administration in LT recipients. The ANN model was established to predict C0 of tacrolimus, SHAP was applied to the trained model, and the SHAP value of each input was calculated to analyze quantitatively the influencing factors for the output C0. Results A back-propagation ANN model with 3 hidden layers was established using deep learning. The mean prediction error was 0.27 ± 0.75 ng/mL; mean absolute error, 0.60 ± 0.52 ng/mL; correlation coefficient between predicted and actual C0 values, 0.9677; and absolute prediction error of all blood concentrations obtained by the ANN model, ≤3.0 ng/mL. The results indicated that the following factors had the most significant effect on C0: age, daily drug dose, genotype at CYP3A5 polymorphism rs776746 in both recipient and donor, and concomitant use of caspofungin. The predicted C0 value of tacrolimus in LT recipients increased in a dose-dependent manner when the daily dose exceeded 3 mg, whereas it decreased with age when LT recipients were older than 48 years. The predicted C0 was higher when recipients and donors had the genotype CYP3A5*3*3 than when they had the genotype CYP3A5*1. The predicted C0 value also increased with the use of caspofungin or Wuzhi capsule. Conclusion and relevance The established ANN model can be used to predict the C0 value of tacrolimus in LT recipients with high accuracy and good predictive ability, serving as a reference for personalized treatment in the early stage after liver transplantation.

Publisher

SAGE Publications

Subject

Pharmacology (medical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3