First Observation of an Acetate Switch in a Methanogenic Autotroph (Methanococcus maripaludis S2)

Author:

Vo Chi Hung12ORCID,Goyal Nishu3,Karimi Iftekhar A12,Kraft Markus245ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore

2. Cambridge Centre for Advanced Research and Education in Singapore Ltd, Singapore

3. Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, India

4. Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK

5. School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore

Abstract

The transition from acetate production by a microorganism in its early growth phase to acetate re-uptake in its late growth phase has been termed acetate switch. It has been observed in several heterotrophic prokaryotes, but not in an autotroph. Furthermore, all reports hitherto have involved the tricarboxylic acid cycle. This study reports the first observation of acetate switch in a methanogenic autotroph Methanococcus maripaludis S2, which uses the Wolfe cycle for its anaerobic respiration. When grown in minimal medium with carbon dioxide as the sole carbon source, and either ammonium or dinitrogen as the sole nitrogen source, M. maripaludis S2 dissimilated acetate in the early growth phase and assimilated it back in the late growth phase. The acetate switch was more pronounced in the dinitrogen-grown cultures. We postulate that the acetate dissimilation in M. maripaludis S2 may serve as a metabolic outlet for the carbon overflow in the early growth phase, and the assimilation in the late growth phase may be due to the scarcity of the carbon source. Based on the primary and secondary protein structures, we propose that MMP0253 may function as the adenosine diphosphate (ADP)-forming acetyl-CoA synthetase to catalyse acetate formation from acetyl-CoA. To verify this, we produced MMP0253 via the ligation-independent cloning technique in Escherichia coli strain Rosetta (DE3) using pNIC28-Bsa4 as the vector. The recombinant protein showed catalytic activity, when added into a mixture of acetyl-CoA, ADP, and inorganic phosphate (Pi). The concentration profile of acetate, together with the enzymatic activity of MMP0253, shows that M. maripaludis S2 can produce acetate and exhibit an acetate switch.

Publisher

SAGE Publications

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3