IP3R at ER-Mitochondrial Contact Sites: Beyond the IP3R-GRP75-VDAC1 Ca2+ Funnel

Author:

Atakpa-Adaji Peace1ORCID,Ivanova Adelina1

Affiliation:

1. Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK

Abstract

Membrane contact sites (MCS) circumvent the topological constraints of functional coupling between different membrane-bound organelles by providing a means of communication and exchange of materials. One of the most characterised contact sites in the cell is that between the endoplasmic reticulum and the mitochondrial (ERMCS) whose function is to couple cellular Ca2+ homeostasis and mitochondrial function. Inositol 1,4,5-trisphosphate receptors (IP3Rs) on the ER, glucose-regulated protein 75 (GRP 75) and voltage-dependent anion channel 1 (VDAC1) on the outer mitochondrial membrane are the canonical component of the Ca2+ transfer unit at ERMCS. These are often reported to form a Ca2+ funnel that fuels the mitochondrial low-affinity Ca2+ uptake system. We assess the available evidence on the IP3R subtype selectivity at the ERMCS and consider if IP3Rs have other roles at the ERMCS beyond providing Ca2+. Growing evidence suggests that all three IP3R subtypes can localise and regulate Ca2+ signalling at ERMCS. Furthermore, IP3Rs may be structurally important for assembly of the ERMCS in addition to their role in providing Ca2+ at these sites. Evidence that various binding partners regulate the assembly and Ca2+ transfer at ERMCS populated by IP3R-GRP75-VDAC1, suggesting that cells have evolved mechanisms that stabilise these junctions forming a Ca2+ microdomain that is required to fuel mitochondrial Ca2+ uptake.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

SAGE Publications

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3