Optimisation of Radiological Protection in Digital Radiology Techniques for Medical Imaging

Author:

Abstract

Use of medical imaging continues to increase, making the largest contribution to the exposure of populations from artificial sources of radiation worldwide. The principle of optimisation of protection is that ‘the likelihood of incurring exposures, the number of people exposed, and the magnitude of their individual doses should all be kept as low as reasonably achievable (ALARA), taking into account economic and societal factors’. Optimisation for medical imaging involves more than ALARA – it requires keeping individual patient exposures to the minimum necessary to achieve the required medical objectives. In other words, the type, number, and quality of images must be adequate to obtain the information needed for diagnosis or intervention. Dose reductions for imaging or x-ray-image-guided procedures should not be used if they degrade image quality to the point where the images are inadequate for the clinical purpose. The move to digital imaging has provided versatile acquisition, post-processing, and presentation options, and enabled wide and often immediate availability of image information. However, because images are adjusted for optimal viewing, the appearance may not give any indication if the dose is higher than necessary. Nevertheless, digital images provide opportunities for further optimisation, and allow the application of artificial intelligence methods. Optimisation of radiological protection for digital radiology (radiography, fluoroscopy, and computed tomography) involves selection and installation of equipment, design and construction of facilities, choice of optimal equipment settings, day-to-day methods of operation, quality control programmes, and ensuring that all personnel receive proper initial and career-long training. The radiation dose levels that patients receive also have implications for doses to staff. As new imaging equipment incorporates more options to improve performance, it becomes more complex and less easily understood, so operators have to be given more extensive training. Ongoing monitoring, review, and analysis of performance is required that feeds back into the improvement and development of imaging protocols. Several different aspects relating to optimisation of protection that need to be developed are set out in this publication. The first is collaboration between radiologists/other radiological medical practitioners, radiographers/medical radiation technologists, and medical physicists, each of whom have key skills that can only contribute to the process effectively when individuals work together as a core team. The second is appropriate methodology and technology, with the knowledge and expertise required to use each effectively. The third relates to organisational processes which ensure that required tasks, such as equipment performance tests, patient dose surveys, and review of protocols, are carried out. There is wide variation in equipment, funding, and expertise around the world, and the majority of facilities do not have all the tools, professional teams, and expertise to fully embrace all the possibilities for optimisation. Therefore, this publication sets out broad levels for aspects of optimisation that different facilities might achieve, and through which they can progress incrementally: Level D – preliminary; Level C – basic; Level B – intermediate; and Level A – advanced. Guidance from professional societies can be invaluable in helping users to evaluate systems and aid in adoption of best practice. Examples of systems and activities that should be in place to achieve the different levels are set out. Imaging facilities can then evaluate the arrangements they already have, and use this publication to guide decisions about the next actions to be taken in optimising their imaging services.

Publisher

SAGE Publications

Reference166 articles.

1. AAMC, 2014. The Core Entrustable Professional Activities (EPAs) for Entering Residencies. American Association of Medical Colleges, Washington, DC. Available at: https://www.aamc.org/what-we-do/mission-areas/medical-education/cbme/core-epas (last accessed 28 August 2021).

2. AAPM, 2001. Cardiac Catheterisation Equipment Performance. AAPM Report No. 70. American Association of Physicists in Medicine, Alexandria, VA.

3. Ongoing quality control in digital radiography: Report of AAPM Imaging Physics Committee Task Group 151

4. AAPM, 2018. Considerations for the Use of Handheld Image Viewers. AAPM Report No. 260. American Association of Physicists in Medicine, Alexandria, VA.

5. AAPM, 2019a. Estimating Patient Organ Dose with Computed Tomography: a Review of Present Methodology and Required DICOM Information. AAPM Report No. 246. American Association of Physicists in Medicine, Alexandria, VA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3