Zinc Finger Transcription Factors in Skeletal Development

Author:

Ganss Bernhard1,Jheon Andrew1

Affiliation:

1. CIHR Group in Matrix Dymanics, Faculty of Dentistry, University of Toronto, 239-150 College Street, Toronto, ON M5S 3E2, Canada;

Abstract

Cellular and molecular processes that regulate the development of skeletal tissues resemble those required for regeneration. Given the prevalence of degenerative skeletal disorders in an increasingly aging population, the molecular mechanisms of skeletal development must be understood in detail if novel strategies are to be developed in regenerative medicine. Research in this area over the past decade has revealed that cell differentiation is largely controlled at the level of gene transcription, which in turn is regulated by transcription factors. Transcription factors usually recognize and bind to specific DNA sequences in the promoter of target genes via characteristic DNA-binding domains. Although the gene family containing C2H2 zinc fingers as DNA-binding motifs is the largest family of transciptional regulators, with several hundred individual members in mammals, only a small but increasing number of zinc finger genes have been implicated in bone, cartilage, or tooth development. These zinc finger proteins (ZFPs) contain multiple structural motifs that require zinc to maintain their structural integrity and function. Interestingly, zinc deficiency is known to result in skeletal growth retardation and has been identified as a risk factor in the pathogenesis of osteoporosis. This review attempts to summarize our current state of knowledge regarding the role of ZFPs in the molecular regulation of skeletogenesis.

Publisher

SAGE Publications

Subject

General Dentistry,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3