Improving Cranial Vault Remodeling for Unilateral Coronal Craniosynostosis—Introducing Automated Surgical Planning

Author:

Robertson Emilie12,Boulanger Pierre3,Kwan Peter1,Louie Gorman1,Aalto Daniel24

Affiliation:

1. Division of Plastic Surgery, University of Alberta, Edmonton, AB, Canada

2. Institute for Reconstructive Sciences in Medicine, Misericordia Hospital, Edmonton, AB, Canada

3. Department of Computing Sciences, University of Alberta, Edmonton, AB, Canada

4. Department of Rehabilitation Sciences, Division of Communication Sciences and Disorders, University of Alberta, Edmonton, AB, Canada

Abstract

Study Design Cranial vault remodeling (CVR) for unicoronal synostosis is challenging due to the asymmetric nature of the deformity. Computer-automated surgical planning has demonstrated success in reducing the subjectivity of decision making in CVR in symmetric subtypes. This proof of concept study presents a novel method using Boolean functions and image registration to automatically suggest surgical steps in asymmetric craniosynostosis. Objective The objective of this study is to introduce automated surgical planning into a CVR virtual workflow for an asymmetric craniosynostosis subtype. Methods Virtual workflows were developed using Geomagic Freeform Plus software. Hausdorff distances and color maps were used to compare reconstruction models to the preoperative model and a control skull. Reconstruction models were rated as high or low performing based on similarity to the normal skull and the amount of advancement of the frontal bone (FB) and supra-orbital bar (SOB). Fifteen partially and fully automated workflow iterations were carried out. Results FB and SOB advancement ranged from 3.08 to 10.48 mm, and −1.75 to 7.78 mm, respectively. Regarding distance from a normal skull, models ranged from .85 to 5.49 mm at the FB and 5.40 to 10.84 mm at the SOB. An advancement of 8.43 mm at the FB and 7.73 mm at the SOB was achieved in the highest performing model, and it differed to a comparative normal skull by .02 mm at the FB and .48 mm at the SOB. Conclusions This is the first known attempt at developing an automated virtual surgical workflow for CVR in asymmetric craniosynostosis. Key regions of interest were outlined using Boolean operations, and surgical steps were suggested using image registration. These techniques improved post-operative skull morphology

Funder

Covenant Health Research Centre SEED Grant

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Oral Surgery,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3