In Vitro Enhanced Osteogenic Potential of Human Mesenchymal Stem Cells Seeded in a Poly (Lactic-co-Glycolic) Acid Scaffold: A Systematic Review

Author:

Maita Karla C.1ORCID,Avila Francisco R.1,Torres-Guzman Ricardo A.1ORCID,Sarabia-Estrada Rachel2,Zubair Abba C.3,Quinones-Hinojosa Alfredo2,Forte Antonio J.2

Affiliation:

1. Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL, USA

2. Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA

3. Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA

Abstract

Study Design Human bone marrow stem cells (hBMSCs) and human adipose-derived stem cells (hADSCs) have demonstrated the capability to regenerate bone once they have differentiated into osteoblasts. Objective This systematic review aimed to evaluate the in vitro osteogenic differentiation potential of these cells when seeded in a poly (lactic- co-glycolic) acid (PLGA) scaffold. Methods A literature search of 4 databases following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted in January 2021 for studies evaluating the osteogenic differentiation potential of hBMSCs and hADSCs seeded in a PLGA scaffold. Only in vitro models were included. Studies in languages other than English were excluded. Results A total of 257 studies were identified after the removal of duplicates. Seven articles fulfilled our inclusion and exclusion criteria. Four of these reviews used hADSCs and three used hBMSCs in the scaffold. Upregulation in osteogenic gene expression was seen in all the cells seeded in a 3-dimensional scaffold compared with 2-dimensional films. High angiogenic gene expression was found in hADSCs. Addition of inorganic material to the scaffold material affected cell performance. Conclusions Viability, proliferation, and differentiation of cells strongly depend on the environment where they grow. There are several factors that can enhance the differentiation capacity of stem cells. A PLGA scaffold proved to be a biocompatible material capable of boosting the osteogenic differentiation potential and mineralization capacity in hBMSCs and hADSCs.

Funder

Mayo Clinic Center for Regenerative Medicine

Mayo Clinic Clinical Research Operations Group

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Oral Surgery,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in nucleic acid delivery strategies for diabetic wound therapy;Journal of Clinical & Translational Endocrinology;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3