Bioinformatics for Cancer Management in the Post-Genome Era

Author:

Katoh Masuko1,Katoh Masaru2

Affiliation:

1. M & M Medical BioInformatics Hongo 113-0033

2. Genetics and Cell Biology Section National Cancer Center Research Institute Tokyo 104-0045, Japan

Abstract

Human cancer is caused by multiple factors, such as genetic predisposition, chronic persistent inflammation, environmental factors, life style, and aging. Dysregulated proliferation, dysregulated adhesion, resistance to apoptosis, resistance to senescence, and resistance to anti-cancer drugs are features of cancer cells. Accumulation of multiple epigenetic changes and genetic alterations of cancer-associated genes during multi-stage carcinogenesis results in more malignant phenotypes. Post-genome science is characterized by omics data related to genome, transcriptome, proteome, metabolome, interactome, and epigenome as well as by high-throughput technology, such as whole-genome tiling oligonucleotide array, array CGH with 32,433 overlapping BAC clones, transcriptome microarray, mass spectrometry, tissue-based expression array, and cell-based transfection array. Benchtop oncology supplies Desktop oncology with large amounts of omics data produced by high-throughput technology. Desktop oncology establishes knowledge on cancer-related biomarkers, such as predisposition markers, diagnostic markers, prognostic markers, and therapeutic markers, by using bioinformatics and human intelligence of experts for data mining and text mining. Bedside oncology applies the knowledge established by Desktop oncology to determine therapeutics for cancer patients. Antibody drugs (Trastuzumab/Herceptin, Cetuximab/Erbitux, Bevacizumab/Avastin, et cetera), small molecule inhibitors for tyrosine kinases (Gefitinib/Iressa, Erlotinib/Tarceva, Imatinib/Gleevec, et cetera), conventional cytotoxic drugs, and anti-hormonal drugs are used for cancer chemotherapy. Biomarker monitoring contributes to therapeutic optional choice and drug dosage determination for cancer patients. Knowledge on biomarkers is feedforwarded from desktop to bedside in the translational research, and then biomarker monitoring is feedbacked from bedside to desktop in the reverse translational research. Desktop oncology is indispensable for cancer research in the post-genome era. Combination of genetic screening for cancer predisposition in the general population and precise selection of therapeutic options during cancer management could contribute to the realization of personalized prevention and to dramatically improve the prognosis of cancer patients in the future.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3