Assessing Neurocognitive Dysfunction in Cranial Radiotherapy: Can Cognitive Event-related Potentials Help?

Author:

Pearlstein Robert D.12,Whitten Crystal3,Haerich Paul4

Affiliation:

1. Department of Surgery/Neurosurgery Duke University and Medical Center Box 3388 DUMC Durham, NC 27710, USA

2. Department of Radiation Medicine Loma Linda University Loma Linda, CA 92350, USA

3. Department of Nutrition Loma Linda University Loma Linda, CA 92350, USA

4. Department of Psychology Loma Linda University Loma Linda, CA 92350, USA

Abstract

Cognitive changes are common sequelae of cancer and cancer treatment, particularly in patients receiving cranial radiotherapy (RT). These effects are typically assessed by subjective clinical examination or using objective neuropsychological tests. Biologically based neurophysiological methods have been increasingly applied to the study of cognitive processing in neuropsychiatric and neurological disorders and as objective measures of cognitive status for patients with dementia. These methods detect the activation of neural circuits that directly mediate cognitive function in the human brain and include metabolic and electrophysiology based techniques. Neuroimaging procedures such as 18FDG PET and more recently fMRI, which detect metabolic activation associated with cognitive processing, provide excellent spatial resolution and can be directly correlated with neuroradiological findings associated with cranial RT neurotoxicity. Clinical electrophysiology procedures such as cognitive event-related potentials (ERP), which detect the neuronal electrical activity associated with cognitive processing, offer excellent temporal resolution at low cost. Cognitive ERP techniques are already being used to assess severity and progression of cognitive dysfunction in patients with vascular and degenerative dementias, but have been largely overlooked in studies of radiation-related cognitive impairments. We review these various electrophysiological methods in the context of their relevance to assessing cranial RT effects on cognitive function, and provide recommendations for a neurophysiological approach to supplement current neuropsychological tests for RT cognitive impairments. This technology is well suited for clinical assessment of neurocognitive sequelae of cancer and should provide new insights into the mechanism of RT-related cognitive dysfunction.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3