Optimization of Physical Dose Distributions with Hadron Beams: Comparing Photon IMRT with IMPT

Author:

Oelfke U.1,Bortfeld T.2

Affiliation:

1. Department of Medical Physics, Deutsches Krebsforschungszentrum, (DKFZ) Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany

2. MGH Northeast Proton Therapy Center, 30 Fruit Street, Boston, MA. USA

Abstract

Intensity modulated radiotherapy with high enengy photons (IMRT) and with charged particles (IMPT) refer to the most advanced development in conformal radiation therapy. Their general aim is to increase local tumor control rates while keeping the radiation induced complications below desired thresholds. IMRT is currently widely introduced in clinical practice. However, the more complicated IMPT is still under development. Especially, spot-scanning techniques integrated in rotating gantries that can deliver proton or light ion-beams to a radiation target from any direction will be available in the near future. We describe the basic concepts of intensity modulated particle therapy (IMPT). Starting from the potential advantages of hadron therapy inverse treatment planning strategies are discussed for various dose delivery techniques of IMPT. Of special interest are the techniques of distal edge tracking (DET) and 3D-scanning. After the introduction of these concepts a study of comparative inverse treatment planning is presented. The study aims to identify the potential advantages of achievable physical dose distributions with proton and carbon beams, if different dose delivery techniques are employed. Moreover, a comparison to standard photon IMRT is performed. The results of the study are summarized as: i) IMRT with photon beams is a strong competitor to intensity modulated radiotherapy with charged particles. The most obvious benefit observed for charged particles is the reduction of medium and low doses in organs at risk. ii) The 3D-scanning technique could not improve the dosimetric results achieved with DET, although 10–15 times more beam spots were employed for 3D-scanning than for DET. However, concerns may arise about the application of DET, if positioning errors of the patient or organ movements have to be accounted for. iii) Replacing protons with carbon ions leads to further improvements of the physical dose distributions. However, the additional degree of improvement due to carbon ions is modest. The main clinical potential of heavy ion beams is probably related to their radiobiological properties.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3