Imaging of the Ovary

Author:

Brewer Molly A.12,Utzinger Urs12,Barton Jennifer K.1,Hoying James B.1,Kirkpatrick Nathaniel D.1,Brands William R.2,Davis John R.3,Hunt Katherine2,Stevens Sally J.4,Gmitro Arthur F.156

Affiliation:

1. Biomedical Engineering Program

2. Division of Gynecologic Oncology

3. Department of Pathology, University of Arizona 1515 N. Campbell Ave., Room 1968 Tucson, AZ 85724-5024 USA

4. Southwest Institute for Research on Women

5. Department of Radiology, University of Arizona 1515 N. Campbell Ave., Room 1968 Tucson, AZ 85724-5024 USA

6. Optical Sciences University of Arizona 1515 N. Campbell Ave., Room 1968 Tucson, AZ 85724-5024 USA

Abstract

Epithelial ovarian cancer has the highest mortality rate among the gynecologic cancers and spreads beyond the ovary in 90% of the women diagnosed with ovarian cancer. Detection before the disease has spread beyond the ovary would significantly improve the survival from ovarian cancer, which is currently only 30% over 5 years, despite extensive efforts to improve the survival. This study describes initial investigation of the use of optical technologies to improve the outcome for this disease by detecting cancers at an earlier and more treatable stage. Women undergoing oophorectomy were recruited for this study. Ovaries were harvested for fluorescence spectroscopy, confocal microscopy, and optical coherence tomography. Fluorescence spectroscopy showed large diagnostic differences between normal and abnormal tissue at 270 and 340 nm excitation. Optical coherence tomography was able to image up to 2mm deep into the ovary with particular patterns of backscattered intensity observed in normal versus abnormal tissue. Fluorescence confocal microscopy was able to visualize sub-cellular structures of the surface epithelium and underlying cell layers. Optical imaging and/or spectroscopy has the potential to improve the diagnostic capability in the ovary, but extended systematic investigations are needed to identify the unique signatures of disease. The combination of optical technologies supported by modern molecular biology may lead to an instrument that can accurately detect early carcinogenesis.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3