The Importance of Quasi-4D Path-Integrated Dose Accumulation for More Accurate Risk Estimation in Stereotactic Liver Radiotherapy

Author:

Taylor Michael L.12,Yeo Unjin A.13,Supple Jeremy1,Keehan Stephanie1,Siva Shankar4,Kron Tomas12,Pham Daniel5,Haworth Annette12,Franich Rick D.1

Affiliation:

1. School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Australia

2. Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Australia

3. Physics Department, Radiation Oncology Victoria, Melbourne, Australia

4. Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia

5. Radiation Therapy Services, Peter MacCallum Cancer Centre, East Melbourne, Australia

Abstract

Intrafraction organ deformation may be accounted for by inclusion of temporal information in dose calculation models. In this article, we demonstrate a quasi-4-dimensional method for improved risk estimation. Conventional 3-dimensional and quasi-4-dimensional calculations employing dose warping for dose accumulation were undertaken for patients with liver metastases planned for 42 Gy in 6 fractions of stereotactic body radiotherapy. Normal tissue complication probabilities and stochastic risks for radiation-induced carcinogenesis and cardiac complications were evaluated for healthy peripheral structures. Hypothetical assessments of other commonly employed dose/fractionation schedules on normal tissue complication probability estimates were explored. Conventional 3-dimensional dose computation may result in significant under- or overestimation of doses to organ at risk. For instance, doses differ (on average) by 17% (σ = 14%) for the left kidney, by 14% (σ = 7%) for the right kidney, by 7% (σ = 9%) for the large bowel, and by 10% (σ = 14%) for the duodenum. Discrepancies in the excess relative risk range up to about 30%. The 3-dimensional approach was shown to result in cardiac complication risks underestimated by >20%. For liver stereotactic body radiotherapy, we have shown that conventional 3-dimensional dose calculation may significantly over-/underestimate dose to organ at risk (90%-120% of the 4-dimensional estimate for the mean dose and 20%-150% for D2%). Providing dose estimates that most closely represent the actual dose delivered will provide valuable information to improve our understanding of the dose response for partial volume irradiation using hypofractionated schedules. Excess relative risks of radiocarcinogenesis were shown to range up to approximately excess relative risk = 4 and the prediction thereof depends greatly on the use of either 3-dimensional or 4-dimensional methods (with corresponding results differing by tens of percent).

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3