Towards Solid Tumor Treatment by Nanosecond Pulsed Electric Fields

Author:

Esser Axel T.1,Smith Kyle C.12,Gowrishankar T. R.1,Weaver James C.1

Affiliation:

1. Harvard-MIT Division of Health Sciences and Technology,

2. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge MA, 02139, U.S.A.

Abstract

Local and drug-free solid tumor ablation by large nanosecond pulsed electric fields leads to supra-electroporation of all cellular membranes and has been observed to trigger nonthermal cell death by apoptosis. To establish pore-based effects as the underlying mechanism inducing apoptosis, we use a multicellular system model (spatial scale 100 μm) that has irregularly shaped liver cells and a multiscale liver tissue model (spatial scale 200 mm). Pore histograms for the multicellular model demonstrate the presence of only nanometer-sized pores due to nanosecond electric field pulses. The number of pores in the plasma membrane is such that the average tissue conductance during nanosecond electric field pulses is even higher than for longer irreversible electroporation pulses. It is shown, however, that these nanometer-sized pores, although numerous, only significantly change the permeability of the cellular membranes to small ions, but not to larger molecules. Tumor ablation by nanosecond pulsed electric fields causes small to moderate temperature increases. Thus, the underlying mechanism(s) that trigger cell death by apoptosis must be non-thermal electrical interactions, presumably leading to different ionic and molecular transport than for much longer irreversible electroporation pulses.

Publisher

SAGE Publications

Subject

Cancer Research,Oncology

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3